Elevation of basal intracellular calcium as a central element in the activation of brain macrophages (microglia): suppression of receptor-evoked calcium signaling and control of release function.

نویسندگان

  • Anja Hoffmann
  • Oliver Kann
  • Carsten Ohlemeyer
  • Uwe-Karsten Hanisch
  • Helmut Kettenmann
چکیده

Microglia-brain macrophages are immune-competent cells of the CNS and respond to pathologic events. Using bacterial lipopolysaccharide (LPS) as a tool to activate cultured mouse microglia, we studied alterations in the intracellular calcium concentration ([Ca 2+]i) and in the receptor-evoked generation of transient calcium signals. LPS treatment led to a chronic elevation of basal [Ca 2+]i along with a suppression of evoked calcium signaling, as indicated by reduced [Ca 2+]i transients during stimulation with UTP and complement factor 5a. Presence of the calcium chelator BAPTA prevented the activation-associated changes in [Ca 2+]i and restored much of the signaling efficacy. We also evaluated downstream consequences of a basal [Ca 2+]i lifting during microglial activation and found BAPTA to strongly attenuate the LPS-induced release of nitric oxide (NO) and certain cytokines and chemokines. Furthermore, microglial treatment with ionomycin, an ionophore elevating basal [Ca 2+]i, mimicked the activation-induced calcium signal suppression but failed to induce release activity on its own. Our findings suggest that chronic elevation of basal [Ca 2+]i attenuates receptor-triggered calcium signaling. Moreover, increased [Ca 2+]i is required, but by itself is not sufficient, for release of NO and certain cytokines and chemokines. Elevation of basal [Ca 2+]i could thus prove a central element in the regulation of executive functions in activated microglia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advanced Glycation End-Products and Their Receptor-Mediated Roles: Inflammation and Oxidative Stress

Glycation is a protein modification, which results in a change in a protein structure. Glycation is believed to be the etiology of various age-related diseases such as diabetes mellitus and Alz-heimer’s disease (AD). Activation of microglia and resident macrophages in the brain by glycated proteins with subsequent oxidative stress and cytokine release may be an important factor in the progressi...

متن کامل

Involvement of Mu Opioid Receptor Signaling in The Protective Effect of Opioid against 6-Hydroxydopamine-Induced SH-SY5Y Human Neuroblastoma Cells Apoptosis

Introduction: The neuroprotective role of opioid morphine against 6-hydroxydopamineinduced cell death has been demonstrated. However, the exact mechanism(s) underlying such neuroprotection, especially the role of subtype receptors, has not yet been fully clarified. Methods: Here, we investigated the effects of different opioid agonists on 6-OHDA-induced neurotoxicity in human neuroblastoma...

متن کامل

P141: The Role of Microglia in Cortical Spreading Depression in Migraine

Migraine is a disorder that afflicts nearly one tenth of the population. Involving both nervous and vascular system, it has been found as a prominent factor of disability. The migraine attacks may be initiated in the brainstem or may begin peripherally in the meninges while the role of cortical activation preceding an attack is also debated. Although available treatments, more studies on migrai...

متن کامل

Recent Advances in T Cell Signaling in Aging

The immune system of mammalian organisms undergoes alterations that may account for an increased susceptibility to certain infections, autoimmune diseases, or malignancies. Well characterized are age related defect in T cell functions and cell mediated immunity. Although it is well established that the functional properties of T cells decrease with age, its biochemical and molecular nature is...

متن کامل

P151: The Effects of Boswellia Serrate on Central Nervous System

In the process of neuronal inflammation, an increased in inflammatory cytokines (IL-1β, IL-6 and TNF-α) from immune cells (leukocytes and macrophages), brain cells (microglia, astrocytes and neurons) and in hippocampus, amygdala occurs. Raise the level of cytokines result in reduced in production of molecules that are related to plasticity, especially BDNF, IGF-1 and VEGF. Microglia ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 11  شماره 

صفحات  -

تاریخ انتشار 2003